
1 
 

 

Aleutian Islands Golden King Crab CPUE Data Standardization 

 

M.S.M. Siddeek1 and J. Zheng1 

 Alaska Department of Fish and Game 

1.  Division of Commercial Fisheries 

P.O. Box 115526, Juneau, Alaska 99811 

 

Summary report prepared for the Crab Plan Team May 2012 meeting. 

 

 

Preamble 

Our primary task is to standardize the catch-per-unit-effort (CPUE) of observer pot sample and retained catch 

data to input to the Aleutian Islands golden king crab assessment model (Siddeek et al., 2011). The January 

2012 modeling workshop also recommended to fully document the observer and retained catch data collection 

method and investigate the compatibility of observer pot sample with retained catch sample length frequencies. 

This latter task is dealt by Doug Pengilly (personal communication).  This document focused on developing a 

standardization method based on generalized linear model (GLM) for estimating yearly CPUE index.   For this 

report, we used the observer pot sample data for 1990/91-2010/11 for the whole Aleutian Islands region, east of 

174W, and west of 174W to test the model selection and CPUE index estimation procedures.   

 

We plan to improve on the estimated CPUE indexes for observer data, if there are any suggestions from the crab 

plan team (CPT) and carry forward the analysis to estimate retained catch CPUE index for the whole region, 

east of 174W, and west of 174W using 1985/86-2010/11 data.  

 

Method 

Preliminary data processing 

The observer pot sample data of Aleutian Islands golden king crab totaled 102,965 records for 1990/91-2010/11. 

The following variables from each record were considered in the model: 

Year = Federal Fisheries Management Year (July 1-June 30).  This is the main focus of the analysis because 

abundance varies by year, but confounded with other fishery induced variables.  This is treated as a 

predictor factor variable in the model. 
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Month = A calendar month in a fishing year. This is an important variable because the magnitude of CPUE 

changes as the season progresses during a fishing year. This is treated as a predictor factor variable in 

the model. 

Vessel = Identification code for a participating vessel. This is another important variable because the type of 

vessel and the crew affect the capture efficiency. This is treated as a predictor factor variable in the 

model. 

Catch =   Number of crabs caught. This is the response variable. We considered different types of male catch as 

response variable: total males, legal males, and sublegal males. Because the stock assessment model is 

designed for male-only, we did not consider female catch. This is treated as a response numerical 

variable in the model. 

Pot-lifts = Total number of pot lifts realized in the trip completed by the sampled vessel. We considered this as 

an important predictor variable because it affects the abundance available for catching. This is treated as 

a predictor numerical variable in the model. 

Area = The area code is 1 for east of 174 W and 2 for west of 174. This is a management variable. Although this 

variable can be treated as a predictor factor variable we subset the data to 1, 2 or 1 &2 for model fit.  

Depth = Depth in fathom. We considered this variable as an important predictor variable because crab 

abundance is not uniform by depth. This is treated as a predictor numerical variable in the model. 

Soak Days = Soak time in number of days. We considered this variable as an important predictor variable 

because there were significant changes in soak-time duration between pre-and post-rationalization 

periods (Siddeek et al., 2011). This is treated as a predictor numerical variable in the model. 

Gear = Identification code for different types of pot gear. Although a single gear (pot) is used in the fishery, the 

type and configuration varied over the years. Each type of pot has a unique number code (Table 1). We 

considered this variable as an important predictor variable because different gear configurations affect 

catching efficiency. This is treated as a predictor factor variable in the model. 

 

 Because of unusually high and low soak times (some records showed 384 days and some others showed 0 soak 

days) observed in certain years, we arbitrarily selected the records within 0.5% to 99.5% soak time (Table 2). 

The pre-rationalization (prior to the 2005/06 season) period soak time ranged 1-39 days and that for post-

rationalization period ranged 4-54 days.   We combined the trimmed data for the pre-and post rationalization 

period to obtain the total records for analysis.  After removing missing information for variables considered in 

the model and trimming for 0.5-99.5% soak time range, the number of records reduced to 102,611.  

 

There was a maximum of 162 vessels registration codes in the crab retained catch database during 1985/86-

2010/11. The maximum number of vessels dropped to 67 when the period was restricted to 1990/11-2010/11. 

We used the number of catch delivery instances as surrogate for trips in each year for each vessel. They are 
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plotted in Figure 1 to assess the overlap of different vessels’ fishing activities over time. The percentage catch 

and vessel dramatically reduced when we considered vessels with 3, 5, and 9 trips/year over time (Figure 2 for 

1985/86-2010/11 data series and Figure 3 for 1990/91-2010/11 data series). We considered the longer data series 

for analyzing retained catch and the shorter data series for analyzing observer pot sample data. We selected five 

delivery instances per year for at least three years as reasonable to select the core vessels. This set of core 

vessels produced nearly 92% and 93% of the maximum total catches and reduced the number of vessels to 29% 

and 37% of the maximum number of vessels for 1985/86-2010/11 and 1990/91-2010/11, respectively.   This 

reduced the number of observer pot sample records to 88975. 

 

CPUE Standardization 

 

A stepwise generalized linear model (GLM) procedure was used to select the best model and estimate a time 

series of CPUE index based on the relationship between CPUE vs. available predictive 

factor and continuous variables. Following Quinn and Deriso (1999), the GLM based on lognormal distribution 

can be derived from the following: 

 

௜ܷ௝௞ ൌ ܷ଴ ∏ ∏ ௜ܲ௝
௑೔ೕ݁

ఌ೔ೕೖ
௝௜ 	                                                                                     (1) 

 

where U is the observed CPUE, U0  is the reference CPUE, Pij is a factor i at level j, and Xij takes 

a value of 1 when the jth level of the factor Pij is present and 0 when it is not. The random 

error ijk for observation k is a normal random variable with 0 mean and standard deviation σ. 

Taking the logarithm of equation (1) yields an additive generalized  linear model for lognormal error distribution 

of U: 

 

݈݊ሺ ௜ܷ௝௞ሻ ൌ lnሺܷ଴ሻ ൅ ∑ ∑ ௜ܺ௝
௡ೕିଵ
௝ୀଵ ln൫ ௜ܲ௝൯ ൅ ௜௝௞ߝ

௣
௜ୀଵ                            Or 

݈݊ሺ ௜ܷ௝௞ሻ ൌ ଴ߚ ൅ ∑ ∑ ௜ܺ௝
௡ೕିଵ
௝ୀଵ ௜௝ߚ ൅ ௜௝௞ߝ

௣
௜ୀଵ                                                              (2) 

 

where β0  is the intercept and βij = ln(Pij ).  

 

The model described by equations 1 and 2 is over-parameterized.  A common remedial solution is to setting a 

factor coefficient to zero, usually the first, whereupon the remaining nj-1 coefficients of each factor i represent 

incremental effects relative to the reference level. 
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Coefficients obtained by fixing a factor level will differ with the choice of reference level. However, the relative 

differences among the estimated coefficients will not be affected by the choice of constraint. Following Francis 

(1999), coefficients for factor i were transformed to “canonical” coefficients over all levels j calculated relative 

to their geometric mean (Starr, personal communication, March 2012). 

Geometric mean is calculated as , 

βത ൌ 	 ට∏ β୧୨
௡ೕ
௝ୀଵ

೙ೕ
                                                                                                         (3) 

 

The canonical coefficient is 

 

௜ߚ
ᇱ ൌ

ఉ೔
ఉഥ

                                                                                                                        (4) 

 

As CPUE analysis is done in the non-log space, the non-log space canonical coefficient is equivalent to 

ܾᇱ ൌ ݁ఉ೔ିఉഥ  

A number of factors contribute to the variation in CPUE, which includes Year, Month, Vessel, Depth, Soak 

Time, Fishing Effort, etc.  The year of capture is usually given special significance: variations between years in 

this factor are interpreted as relative changes in the annual abundance of the crab.  The resulting series of 

‘fishing year’ canonical coefficients is termed as the “Standardized” annual CPUE index. 

 

For example, consider a model of the form 

௜ݕ     ൌ lnሺܧܷܲܥ௜ሻ ൌ ଴′ߚ ൅ ଵݔଵ′ߚ ൅  	ଶݔଶ′ߚ

If x2 is a factor variable for year, then ߚ′ଶ would take on the values ߚ′ଶ଴   if the year is the reference year 0, and 

 ଶ௜    if the year is some other year i.  So, the CPUE index for year i relative to the reference year 0 is estimated′ߚ

as 

௜ݔ݁݀݊݅ܧܷܲܥ    ൌ 	
௘೤೔

௘೤బ
ൌ

௘ഁᇲబశഁᇲభೣభశഁᇲమ೔ೣమ

௘ഁᇲబశഁᇲభೣభశഁᇲమబೣమ
ൌ ݁ఉᇱమ೔ିఉᇱమబ  

    So, the relative year effects are calculated by dividing the inverse of the fitted model in year i by the inverse 

of the fitted model in the base year 0.  

 

A selection procedure was applied to determine the relative importance of these factors in the model. The 

procedure involves a forward stepwise fitting algorithm which generates regression models iteratively, starting 

with the simplest model, ln(CPUE ) = factor(Fishing year),  and building in complexity subject to a stopping 

rule designed to include only the most important factors. 

 

The following general procedure was used to fit the models: 
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1. Fit the GLM with each predictor variable from a maximum set of predictor (factor and non factor) variables 

against the natural log of CPUE (male total, legal, or sublegal catch per record). 

2. Generate a R2 based on model deviance and also number of degrees of freedom for each fit. 

ܴଶ ൌ
ሺ௡௨௟௟	௠௢ௗ௘௟	ௗ௘௩௜௔௡௖௘ି௔ௗௗ௘ௗ	௣௔௥௔௠௘௧௘௥	௠௢ௗ௘௟	ௗ௘௩௜௔௡௖௘ሻ

௡௨௟௟	௠௢ௗ௘௟	ௗ௘௩௜௔௡௖௘
                                   (5) 

where deviance = a constant-2Maximum log likelihood.  

Select the predictor variable that has the highest R2. 

3. Repeat Steps 1 and 2, accumulating the number of selected predictor variables and 

increasing the model degrees of freedom, until the increase in residual deviance (as 

measured by R2) for the final iteration is less than 0.01.  

 

The log normal model is applicable for positive catch data. Zero catches are also encountered  in observer  

samples. A GLM model based on a binomial distribution and using the presence/absence 

of crab  (success = 1/0)) as the dependent variable was also fitted to the same set of data using the same set of 

explanatory variables. The binomial model will provide another series of standardized  annual CPUE 

coefficients that is similar to the series estimated from the lognormal GLM.   A combined model which 

integrates the two series of relative annual changes estimated by the lognormal and binomial models was 

estimated using the delta distribution which allowed zero and positive catches (Vignaux 1994; Starr, 2012).  

௬ܻ
஼௢௠௕ ൌ

௒೤
ಽ೙

቎ଵି௉బቈଵି
భ

ೊ೤
ಳ೔೙೚೘቉቏

                                                                                     (6) 

where  

  ௬ܻ
஼௢௠௕   = combined CPUE index for year y 

௬ܻ
௅௡           = lognormal CPUE index for year y 

௬ܻ
஻௜௡௢௠     = binomial CPUE index for year y 

଴ܲ 														ൌ proportion of zeros for base year 0 

 

 

For comparison with the standardized CPUE index, we also estimated the nominal CPUE (Arithmetic CPUE) 

and scaled to the level of standardized CPUE index. 

 

௬ܣ ൌ
∑ ஼೔೤
೙೤
೔సభ

∑ ா೔೤
೙೤
೔సభ

                                                                                                         (7) 

 

Aഥ ൌ 	 ට∏ A୷
௡೤
௬ୀଵ

೙೤
                                                                                                (8) 
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௬′ܣ ൌ
஺೤
஺̅

                                                                                                              (9) 

 

 

where  ܥ௜௬  is the catch and ܧ௜௬ is the effort for each record i in year y;  ̅ܣ is the geometric mean of the 

Arithmetic CPUE; and					ܣ௬	 and ܣ′௬ are Arithmetic CPUE and scaled Arithmetic CPUE for year y, 

respectively. 

 

Software use 

We coded in R to process the data (Appendix A). We used two additional R scripts (Step CPUE function.R and 

getCPUE.R) obtained from Paul Starr which were slightly amended for our data for CPUE index calculation.    

 

Results 

Observer pot sample data analysis 

   

To analyze the observer sample data we used first the lognormal GLM  on  non zero catches. We used the 

forward step-wise selection procedure to pick up the best model. We assumed the null model to be 

lnሺܫ௜ሻ ௬೔ݎܻܽ݁~ ൅  ௜                                                                                            (10)ߝ

 

The maximum set of model terms offered to the stepwise selection procedure was: 

 

lnሺܫ௜ሻ ௬೔ݎܻܽ݁~ ൅ ௠೔݄ݐ݊݋ܯ
൅ ௩೔݈݁ݏݏܸ݁ ൅ ௚೔ݎܽ݁ܩ ൅ ݂ሺܵݏݕܽܦ݇ܽ݋௜ሻ ൅ ݃ሺ݄ݐ݌݁ܦ௜ሻ ൅ ௜ݏݐ݂݅ܮݐ݋ܲ ൅  ௜ߝ

                                                                                                                               (11) 

 where I = number of males caught in i th record ( CPUEi) ;   f() and g() are non-linear functions (we used a 

second order orthogonal polynomial functions) ; and all predictor variables are self explanatory by name, and 

subscript  of small characters are factor levels. Note that although golden king crab fishery is executed with a 

single gear (pot), the gear configuration has changed over the years, so different factor levels for the gear were 

considered for the model.   

 

The factor levels considered for each factor variable are: 

Year:  1985 to 2010 for retained catch (not reported here) or 1990 to 2010 for observer pot sample data;  

Month:  1 to 12;  

Vessel:  vessel registration number; and  

Gear: Gear codes. They are provided in Table 1.   
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We explored the influence of each variable by fitting lognormal GLM to individual variable one-at-a time. For 

legal crab, Year factor produced the lowest Akike Information Criteria (AIC) whereas for sublegal crab, Vessel 

factor produced the lowest AIC (Table 3). 

  

The forward selection procedure produced a suite of final models for different subsets of observer pot sample 

data. Gear and Vessel factors were predominant among the selected models (Table 4). 

 

Tables 5 and 7 provide the analysis of deviance values for lognormal fit of legal and sublegal crabs, respectively 

for combined east and west of 174W data. The variable rows are in order of their selection. The corresponding 

results for east of 174 W data are in Tables 9 and 11 and that for west of 174W data are in Tables 13 and 15.  

The variables selected to the final model have significant R2 values (>0.01).  

  

Then we used the binomial GLM  on  catch success predictor variable (i.e., if  catch>0, success=1, and if 

catch=0, success=0). The maximum set of model terms offered to the stepwise selection procedure was: 

 

success	~	ܻ݁ܽݎ௬೔ ൅ ௠೔݄ݐ݊݋ܯ
൅ ௩೔݈݁ݏݏܸ݁ ൅ ௚೔ݎܽ݁ܩ ൅ ݂ሺܵݏݕܽܦ݇ܽ݋௜ሻ ൅ ݃ሺ݄ݐ݌݁ܦ௜ሻ ൅ ௜ݏݐ݂݅ܮݐ݋ܲ ൅  		௜ߝ

  with a binomial logit link function.                                                                     (12) 

 

The selection procedure produced a suite of best models for different subsets of data.  

Tables 6 and 8 provide the analysis of deviance values for binomial fit of legal and sublegal crabs, respectively 

for combined east and west of 174W data. The corresponding results for east of 174 W data are in Tables 10 and 

12 and that for west of 174W data are in Tables 14 and 16.   

 

Figure 4 provides the residual distribution and qq-plot for the best lognormal fit to legal crab for the combined 

east and west of 174W data. Figure 5 compares various CPUE indexes for the combined east and west of 174W 

data for legal crab. Base CPUE index considers only the Year effect disregarding the influence of all other 

factors or numerical variables. It overestimated the recent trend in Arithmetic index. However, both indexes are 

not appropriate. The combined index represents the best CPUE index. The lognormal CPUE index trend 

matches the combined CPUE index trend well.  

 

Figure 6 depicts the residual distribution and qq-plot for the best lognormal fit to sublegal crab for the combined 

east and west of 174W data. Figure 7 compares various CPUE indexes for the combined east and west of 174W 

data for the sublegal crab. All CPUE index trends closely match since 1997.   
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Figure 8 shows the residual distribution for the best lognormal fit to legal crab for the east of 174W data. Figure 

9 compares various CPUE indexes for the east of 174W data for the legal crab. We used the 1995/96 -2010/11 

data because there was a gap in the data series prior to 1995/96 (1994/95 data missing). The CPUE indexes 

match closely.    

 

Figure 10 shows the residual distribution for the best lognormal fit to sublegal crab for the east of 174W data. 

Figure 11 compares various CPUE indexes for the east of 174W data for the sublegal crab.  The CPUE indexes 

match closely.    

 

Figure 12 compares various CPUE indexes for the east of 174W data for the legal crab when the soak time was 

capped at 7 days for pre- and 26 days for post-rationalization periods (these tmax values were estimated by 

fitting Zhou and Shirley model (Zhou and Shirley, 1997).  The CPUE indexes trends were similar to that shown 

in Figure 9. 

    

Figure 13 depicts the residual distribution and qq-plot for the best lognormal fit to legal crab for the west of 

174W data. Figure 14 compares various CPUE indexes for the west of 174W data for the legal crab. The CPUE 

index dipped during post-rationalization period because of the soak-time influence.    

Figure 15 depicts the residual distribution and qq-plot for the best lognormal fit to sublegal crab for the west of 

174W data. Figure 16 compares various CPUE indexes for the west of 174W data for the sublegal crab. The 

CPUE indexes match closely.    

 

Discussion 

We tested the model selection procedure using the observer pot sample data pooled for both management 

regions (east and west of 174W), east of 174W, and west of 174W and calculated CPUE indexes for each subset 

of data.  In most cases the trends in sublegal CPUE indexes were flat and different indices matched.  The soak 

time had an influence on west of 174W CPUE index. We also tested a data set from a New Zealand fishery 

provided by Paul Starr (April 2012) and our results for combined CPUE agreed with his results. Work is in 

progress to get the lognormal, binomial, combined, base, and Arithmetic CPUE indexes separately for whole 

Aleutian Islands, east of 174W, and west of 174W for retained catch data.  

 

Once the CPUE indexes are finalized we will use the combined indexes in the assessment model. 
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Table 1. Gear code assigned to different types of pot gear by observers during the 1990/91-2010/11 seasons.   
The yellow highlighted gear are infrequent and not considered as factor levels. (Pengilly, personal information). 

        
Gear 
Code  Description 

Total pot 
samples 

‐9  #N/A ‐ not recorded  66

1  Dungeness crab pot, small & round  2

2  pyramid pot, tunnel openings usually on sides, stackable  2,107

3  conical pot, opening at top of cone, stackable  1,998

4  4' X 4' rectangular pot  60

5  5' X 5' rectangular pot  16,198

6  6' X 6' rectangular pot  14,927

7  7' X 7' rectangular pot  22,242

8  8' X 8' rectangular pot  1,407

9  5 1/2' X 5 1/2' rectangular pot  6,339

10  6 1/2' X 6 1/2' rectangular pot  19,697

11  7 1/2' X 7 1/2' rectangular pot  375

12  round king crab pot, enlarged version of Dungeness crab pot  8,257

13  10' X 10' rectangular pot  466

14  9' X 9' rectangular pot  1

15  8 1/2' X 8 1/2' rectangular pot  1

17  8' X 9' rectangular pot  1

20  7' X 8' rectangular pot  232

22  snail pot  1

23  dome shaped pot, tunnel opening on top, often longlined in deepwater fisheries  6,755

80  Historical: Cod pot, any shape pot targeting cod, usually with tunnel fingers  711

81  Historical: Rectangular pot, unknown size, with escape rings  1,122

   Grand Total  102,965
 

Table 2. Percentile cutoff levels of soak time for excluding questionable data from the Aleutian Islands golden 

king crab observer database. 

Area  Period  0.5%‐99.5% Percentile Range 
(days) 

East and West Combined  Pre‐rationalization (1990/91‐
2004/05) 

1‐39 

  Post‐rationalization (2005/06‐
2010/11) 

4‐54 

East 174W  Pre‐rationalization   1‐20 
  Post‐rationalization   3‐41 
West 174W  Pre‐rationalization   1‐42 
  Post‐rationalization   6‐56 
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Table 3.  AIC associated with lognormal fit of the CPUE to individual variable for the Aleutian Islands golden 

king crab observer pot sample data for east and west of 174W combined.  

AIC = ‐2*Max.LogLikelihood+2* number of parameters. n= 68076 for Sublegal and 76588 for Legal crabs. The 

yellow highlighted values are the lowest in each category. 

Predictors  Sublegal  Legal  

Year  219060  215034 

Soak Days  219566  222859 

Gear  215701  220772 

Vessel  215060  223560 

Depth  219251  228224 

Month  219148  224733 

Pot Lifts  219765  225922 
 

Table 4. Step-wise model selection for various scenarios for the Aleutian Islands golden king crab observer pot 
sample data. 

Area Crab Category Final Model  
East and West 
Combined 

Legal Ln(CPUE)~ Year+Gear+Month+Soak Days 
Binomial(Success)~ Year+Gear+Month+Vessel 

 Sublegal Ln(CPUE)~ Year+Vessel+Gear+Month 
Binomial(Success)~ Year+Vessel+Depth+Gear+Month 

East 174W Legal Ln(CPUE)~ Year+Gear+Vessel 
Binomial(Success)~ Year+Gear+Vessel 

 Sublegal Ln(CPUE)~ Year+Vessel+Gear+Depth 
Binomial(Success)~ Year+Gear+Vessel+Depth 

West 174W Legal Ln(CPUE)~ Year+Vessel+ Soak Days+Gear 
Binomial(Success)~ Year+Vessel+Gear+Soak Days 

 Sublegal Ln(CPUE)~ Year+Vessel+Gear 
Binomial(Success)~ Year+Vessel+Depth 

East 174W Legal: maximum soak time was 
set at 7days for pre- and 26 
days for post-rationalization 
periods 

Ln(CPUE)~ Year+Gear+Vessel 
Binomial(Success)~ Year+Gear+Vessel 
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Table 5. Analysis of deviance for stepwise lognormal model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (combined east and west of 174 W). The response variable is legal 
crab CPUE.  

Factor df (difference 

from null) 

Deviance Residual df Residual 

Deviance 

R2 

Year    76567          ‐41.841         0.159         

Gear ‐15  ‐29.9570 76552 ‐71.798         0.202 

Month -11 ‐21.9769       76541 ‐93.775         0.225 

Soak Days  -2 ‐3.9838        76539 ‐97.759         0.241 

Selection process used R2 difference > 0.01. Deviance = up to a constant, minus twice the maximized log‐

likelihood (constant is selected to make the deviance 0 for the saturated model). 

Table 6. Analysis of deviance for stepwise binomial model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (combined east and west of 174 W). The response variable is legal 
crab success catch.  

Factor df (difference 

from null) 

Deviance Residual df Residual 

Deviance 

R2 

Year    88954      ‐41.965    0.035 

Gear ‐15  ‐29.971 88939     ‐71.935         0.065 

Month -11 ‐21.980       88928     ‐93.916        0.084 

Vessel  -24 ‐47.984      88904    ‐141.899   0.101 

 

Table 7. Analysis of deviance for stepwise lognormal model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (combined east and west of 174 W). The response variable is sublegal 
crab CPUE.  

Factor df (difference 

from null) 

Deviance Residual df Residual 

Deviance 

R2 

Year    68055        ‐41.987         0.013        

Vessel ‐24  ‐47.930      68031 ‐89.918    0.082 

Gear -15 ‐29.971      68016 ‐119.888    0.112 

Month  -11 ‐21.985      68005 ‐141.873    0.127 
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Table 8. Analysis of deviance for stepwise binomial model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (combined east and west of 174 W). The response variable is sublegal 
crab success catch.  

Factor df (difference 

from null) 

Deviance Residual df Residual 

Deviance 

R2 

Year    88954      ‐41.992    0.008 

Vessel ‐24  ‐47.965      88930     ‐89.957   0.043 

Depth -2 ‐3.977      88928     ‐93.935    0.065 

Gear  -15 ‐29.985      88913    ‐123.920   0.080 

Month -11 ‐21.986       88902  ‐145.906    0.094 

 

Table 9 Analysis of deviance for stepwise lognormal model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (east of 174 W). The response variable is legal crab CPUE.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    38586      ‐31.797     0.203 

Gear   ‐14  ‐27.927      38572     ‐59.725    0.275 

Vessel  -18 ‐35.984      38554     ‐95.709    0.291 

 

Table 10. Analysis of deviance for stepwise binomial model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (east of 174 W). The response variable is legal crab success catch.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    43100      ‐31.956    0.044 

Gear  ‐14  ‐27.932 43086     ‐59.888   0.112 

Vessel  -18 ‐35.988      43068     ‐95.876   0.124 

 

Table 11. Analysis of deviance for stepwise lognormal model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (east of 174 W). The response variable is sublegal crab CPUE.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    34713      ‐31.977    0.023 

Vessel   ‐18  ‐35.876      34695     ‐67.854   0.146 

Gear  -14 ‐27.962      34681     ‐95.816   0.184 

Depth -2 ‐3.988       34679  ‐99.803    0.197 
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Table 12. Analysis of deviance for stepwise binomial model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (east of 174 W). The response variable is sublegal crab success catch.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    43100      ‐31.988  0.012 

Gear  ‐14  ‐27.940 43086     ‐59.928   0.072 

Vessel  -18 ‐35.971     43068     ‐95.899   0.101 

Depth -2 ‐3.985  43066  ‐99.884  0.116 

 

Table 13. Analysis of deviance for stepwise lognormal model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (west of 174 W). The response variable is legal crab CPUE.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    37366      ‐41.853     0.147 

Vessel   ‐22  ‐43.945      37344     ‐85.798    0.202 

Soak 

Days 

  -2  ‐3.976      37342     ‐89.774    0.226 

Gear  -15 ‐29.984       37327  ‐119.758     0.242 

 

Table 14. Analysis of deviance for stepwise binomial model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (west of 174 W). The response variable is legal crab success catch.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    45122      ‐41.963    0.037 

Vessel  ‐22  ‐43.961      45100     ‐85.924 0.076 

Gear  -15 ‐29.980      45085    ‐115.904 0.096 

Soak 

Days 

-2 ‐3.990       45083  ‐119.893    0.107 

 

Table 15. Analysis of deviance for stepwise lognormal model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (west of 174 W). The response variable is sublegal crab CPUE.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    32750          ‐41.991     0.009 

Vessel   ‐22  ‐43.916      32728        ‐85.907    0.093 

Gear  -15 ‐29.985     32713     ‐115.892    0.108 
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Table 16. Analysis of deviance for stepwise binomial model selection for the observer pot sample data for the 
Aleutian Islands golden king crab fishery (west of 174 W). The response variable is sublegal crab success catch.  

Factor df (difference from null) Deviance Residual df Residual Deviance R2

Year    45122      ‐41.988   0.012 

Vessel  ‐22  ‐43.950      45100     ‐85.938 0.062 

Depth  -2 ‐3.976      45098    ‐89.914   0.086 

 

 

 

 

 

 

Figure 1.  Golden king crab catch reporting frequency by vessel from both regions (combined east and west of 

174 W) of Aleutian Islands. 
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Figure 2. Core vessel selection based on 1985-2011 commercial fisheries data for the Aleutian Islands golden 
king crab fishery (combined east and west of 174 W). 3-trip =  three trips per year; 5-trip =  five trips per year; 
and 9-trip =  nine trips per year . The percentage catch and vessels dropped as the number of minimum years the 
vessels with those yearly reporting rates increased. 

 

Figure 3. Core vessel selection based on 1990-2011 commercial fisheries data for the Aleutian Islands golden 
king crab fishery (combined east and west of 174 W). 3-trip =  three trips per year; 5-trip =  five trips per year; 
and 9-trip =  nine trips per year. The percentage catch and vessels dropped as the number of minimum years the 
vessels with those yearly reporting rates increased.   
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Figure 4. Residual and QQ plots of the best lognormal fit model for legal CPUE from combined east and west of 
174 W.  Observer pot sample data for 1990/91-2010/11 were used. 
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Figure 5. Trends in legal CPUE indexes for the observer pot sample data for the Aleutian Islands golden king 
crab fishery (combined east and west of 174 W). Lognormal: black line with 2standard errors; Combined: red 
line; Base: blue line; and Arithmetic: black filled circles. 
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Figure 6. Residual and QQ plots of the best lognormal fit model for sublegal CPUE from combined east and 
west of 174 W.  Observer pot sample data for 1990/91-2010/11 were used. 
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Figure 7. Trends in sublegal CPUE indexes for the observer pot sample data for the Aleutian Islands golden king 
crab fishery (combined east and west of 174 W). Lognormal: black line with 2standard errors; Combined: red 
line; Base: blue line; and Arithmetic: black filled circles. 

 
Figure 8. Residual plot of the best lognormal fit model for legal CPUE from east of 174 W.  Observer pot 
sample data for 1995/96-2010/11 were used. 
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Figure 9. Trends in legal CPUE indexes for the observer pot sample data for the Aleutian Islands golden king 
crab fishery (east and of 174 W). Lognormal: black line with 2standard errors; Combined: red line; Base: blue 
line; and Arithmetic: black filled circles. 

 
Figure 10. Residual plot of the best lognormal fit model for sublegal CPUE from east of 174 W.  Observer pot 
sample data for 1995/96-2010/11 were used. 
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Figure 11. Trends in sublegal CPUE indexes for the observer pot sample data for the Aleutian Islands golden 
king crab fishery (east of 174 W). Lognormal: black line with 2standard errors; Combined: red line; Base: blue 
line; and Arithmetic: black filled circles. 

 

Figure 12. Trends in legal CPUE indexes for the observer pot sample data for the Aleutian Islands golden king 
crab fishery (east of 174 W). Lognormal: black line with 2standard errors; Combined: red line; Base: blue line; 
and Arithmetic: black filled circles. Soak time capped at maximum. 
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Figure 13. Residual and QQ plots of the best lognormal fit model for legal CPUE from west of 174 W.  
Observer pot sample data for 1990/91-2010/11 were used. 
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Figure 14. Trends in legal CPUE indexes for the observer pot sample data for the Aleutian Islands golden king 
crab fishery (west of 174 W). Lognormal: black line with 2standard errors; Combined: red line; Base: blue line; 
and Arithmetic: black filled circles. 
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Figure 15. Residual and QQ plots of the best lognormal fit model for sublegal CPUE from west of 174 W.  
Observer pot sample data for 1990/91-2010/11 were used. 
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Figure 16. Trends in sublegal CPUE indexes for the observer pot sample data for the Aleutian Islands golden 
king crab fishery (west of 174 W). Lognormal: black line with 2standard errors; Combined: red line; Base: blue 
line; and Arithmetic: black filled circles. 
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Appendix  

R script used in CPUE standardization.   The step CPUE (two R code files provided by Paul Starr) and the data 
file (restricted because of ADF&G privacy policy) are available with the first author. 

# initial environment setting   

  options(contrasts=c("contr.treatment", "contr.poly")) 

  options(object.size =100000000) 

# 

# Read the observer data file 

  allobsdat<- read.csv("c:/WorkRUpdate1/allobsbasedata_calc_trim1.csv", header=TRUE) 

# 

# divide into pre-post rationalization periods 

#    

   preallobsdat<- allobsdat[allobsdat$FMPYear<2005,] 

   postallobsdat<- allobsdat[allobsdat$FMPYear>=2005,] 

# 

# Trim by percentile cutoff points of soak time 

# 

   preallobsdatcut <- preallobsdat[preallobsdat$SoakDays>0 & preallobsdat$SoakDays<40,] 

   postallobsdatcut <- postallobsdat[postallobsdat$SoakDays>3 & postallobsdat$SoakDays<55,] 

# 

# Combine the pre- and post- into combined data file 

# 

  prepostobsdatrim<- rbind(preallobsdatcut, postallobsdatcut) 

  allobsdatrim<- prepostobsdatrim 

# 

# Change some data frame variables to factors 

#  

 allobsdatrim$Date<- as.Date(allobsdatrim$Date,format="%m/%d/%Y") 
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 allobsdatrim$FMPYear<- as.factor(allobsdatrim$FMPYear) 

 allobsdatrim$PotSampYear<- as.factor(allobsdatrim$PotSampYear) 

 allobsdatrim$PotSampMonth<- as.factor(allobsdatrim$PotSampMonth) 

 allobsdatrim$Trip<- as.factor(allobsdatrim$Trip) 

 allobsdatrim$ADFG<- as.factor(allobsdatrim$ADFG) 

 allobsdatrim$Area<- as.factor(allobsdatrim$Area) 

 allobsdatrim$Gear<- as.factor(allobsdatrim$Gear) 

# 

# add a (binomial) variable to the data set to reflect success or failure 

# 

 allobsdatrim$success[allobsdatrim$Mtotal>0]<- 1 

 allobsdatrim$success[allobsdatrim$Mtotal==0]<- 0 

# 

# select core data 

#  

  datacore<- allobsdatrim[allobsdatrim$Yrsof5>=3,] 

# 

# Calculate the series of proportions zero (unsuccessful) 

#  

  prop.zero<- (table(datacore$FMPYear)-
table(datacore$FMPYear[datacore$success==1]))/table(datacore$FMPYear) 

# 

# Subset core data by positive catch values for lognormal fit 

# 

  datacore1<- datacore[datacore$success==1,] 

# 

# Find the best model from lognormal fit by glm and stepwise glm 

# 

  glm.object<- glm(log(Mtotal)~FMPYear,data=datacore1) 
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  obsdatout<- stepCPUE(glm.object,scope=list(upper= 
~FMPYear+PotSampMonth+ADFG+Gear+poly(SoakDays,3)+poly(Depth,3)+FTPotlifts),lower= 
~FMPYear,direction="forward",trace=9,r2.change=0.01) 

# 

# Results from lognormal fit of the best model 

# 

  best.glm<-glm(log(Mtotal)~ FMPYear+Gear+PotSampMonth+ADFG,y=TRUE, data=datacore1) 

# 

#Get relative lognormal indices (with the base year =1) 

 sumglm<-summary(best.glm) 

 coefsglm <- exp(as.numeric(c(0, sumglm$coefficients[2:21,1]))) 

#get canonical lognormal indices 

 cpue.glm<-getCPUE(best.glm,2:21, 1990:2010) 

  write.csv(cpue.glm,"C:/WorkRUpdate1/allobsYearlyLnCPUEIndex.csv",row.names=F) 

# Get base year relative lognormal indices (with the base year =1) 

  base.glm<-glm(log(Mtotal)~ FMPYear,y=TRUE, data=datacore1) 

 sumglm1<-summary(base.glm) 

 coefsbaseglm <- exp(as.numeric(c(0, sumglm1$coefficients[2:21,1]))) 

# get canonical lognormal indices for the base index  

 cpue1.glm<-getCPUE(base.glm,2:21, 1990:2010) 

 write.csv(cpue1.glm,"C:/WorkRUpdate1/allobsBaseYearLnCPUEIndex.csv",row.names=F) 

# 

# Find the best binomial model 

  glm.object2<- glm(success~FMPYear,family=binomial(link=logit),data=datacore) 

  obsdatout2<- stepCPUE(glm.object2,scope=list(upper= 
~FMPYear+PotSampMonth+ADFG+Gear+poly(SoakDays,3)+poly(Depth,3)+FTPotlifts),lower= 
~FMPYear,family=binomial(link=logit),direction="forward",trace=9,r2.change=0.01) 

# Results from binomial fit of the best model 

  best2.glm<-glm(success ~ 
FMPYear+poly(Depth,3)+ADFG+PotSampMonth+Gear,family=binomial(link=logit),y=TRUE,data=datacore) 

#Get relative binomial indices (with the base year =1) 
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 sumglm2<-summary(best2.glm) 

 coefsbin <- exp(as.numeric(c(0, sumglm2$coefficients[2:21,1]))) 

# get canonical binomial indices 

 cpue2.glm<-getCPUE(best2.glm,2:21, 1990:2010) 

 write.csv(cpue2.glm,"C:/WorkRUpdate1/allobsYearlyBinomCPUEIndex.csv",row.names=F) 

# Get base relative binomial indices (with the base year =1) 

  base3.glm<-glm(success~ FMPYear,family=binomial(link=logit),y=TRUE, data=datacore) 

 sumglm3<-summary(base3.glm) 

 coefsbasebin <- exp(as.numeric(c(0, sumglm3$coefficients[2:21,1]))) 

# 

# Calculate combined indices combining lognormal and binomial indexes 

 n<-length(coefsglm) 

 Comb<-rep(0,n) 

 for(i in 1:n){ 

 Comb[i]<-coefsglm[i]/(1-prop.zero[1]*(1-1/coefsbin[i]))} 

# get canonical combined indices 

 Combined <- Comb/exp(mean(log(Comb))) 

   write.csv(Combined,"C:/WorkRUpdate1/allobsCombCPUEIndex.csv",row.names=F) 

# 

# Arithmetic CPUE index 

# 

  RCPUE<- tapply(datacore1$Mtotal,datacore1$FMPYear,mean) 

  GMRCPUE<- exp(mean(log(RCPUE))) 

  RCPUEdash<- RCPUE/GMRCPUE 

  write.csv(RCPUEdash,"C:/WorkRUpdate1/allobsScaledArithCPUEIndex.csv",row.names=F) 


